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Internet of 'ings (IoT) is widely used in environmental monitoring, smart healthcare, and other fields. Due to its distributed
nature, IoT is vulnerable to various internal attacks. One of these attacks is the packet-dropping attack, which is very harmful. 'e
existing packet-dropping attack detection algorithms are unsuitable for emerging resource-constrained IoT networks. For ex-
ample, ML-based algorithms always inject numerous packets to obtain the training dataset. However, it is heavyweight for energy-
limited nodes to forward these extra packets. In this paper, we propose a lightweight evidence fusion-based detection algorithm
(EFDA), which leverages the packet forwarding evidence to identify malicious nodes. Firstly, EFDA finds the sequence numbers of
dropped packets and their corresponding source nodes. 'en, it traces the routing path of each dropped packet and collects
evidence for detection. 'e evidence stored by nodes around the path record the node’s forwarding behaviors. Finally, the
collected evidence is fused to evaluate the trust of nodes. Based on nodes’ trust, the K-means clustering is used to distinguish
between malicious nodes and benign nodes. We conduct simulation experiments to compare EFDA with ML-based algorithms.
'e experimental results demonstrate that EFDA can detect the packet-dropping attack without injecting packets and achieve a
higher detection accuracy.

1. Introduction

In the last decade, the Internet of things (IoT) has become a
popular infrastructure to support many applications, such as
intelligent transportation [1] and smart home [2]. IoT is a
system consisting of interrelated computing devices, which
collect and process the data acquired from the environ-
ments. 'ese devices (such as sensors) cooperate with each
other through the IoT protocol, including ZigBee [3], Wi-Fi
[4], and Bluetooth.

With the rapid development and application of IoT, it is
prone to varied attacks, among which the packet-dropping
attack is very hard to detect and prevent. In the packet-
dropping attack, malicious attackers can invade and control
legitimate devices to discard some essential packets halfway,
causing the base station loses the important information. For
example, malicious nodes drop the vital packets in the
healthcare wireless sensor network (WSN) that contains the

alarm information for the patient’s health parameters such
as blood pressure and heart rate [5]. If the alarm information
is not transmitted to the doctors but dropped halfway, the
patients will be at risk. It is vital to detect malicious nodes.

1.1. Motivation. In recent years, many traditional packet-
dropping attack detection algorithms have been proposed,
but they are not suitable for the emerging resource-con-
strained IoT networks. For instance, traditional machine
learning (ML)-based detection algorithms [6–9] identify
malicious nodes by training detection models. 'e perfor-
mance of the detection models depends on the size of the
training dataset. To get a large size of the training dataset,
numerous labeled packets need to be injected into the IoT
networks. However, it is heavyweight for energy-limited
nodes to forward numerous injected packets. It is crucial to
propose a lightweight algorithm for resource-constrained
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IoT networks. To overcome this problem, we propose a
lightweight evidence fusion-based detection algorithm
(EFDA), which uses the packet forwarding evidence (PFEs)
to identify malicious nodes. �e PFE is generated during the
packet forwarding process. When a node in the network
forwards a packet, it locally stores a packet forwarding re-
cord. Due to the broadcast characteristic of wireless com-
munication in IoT networks, each neighbor of the node can
sni� the packet and generate a PFE.

As shown in Figure 1, EFDA contains three phases.

(1) Getting the dropped packet set: the base station
needs to �nd the dropped packets and their corre-
sponding source nodes. For this purpose, the base
station divides received packets into groups
according to their source nodes. �en, the base
station sorts the received packets in each group based
on their sequence numbers.�e dropped packets can
be found because their sequence numbers are not in
the groups. Figure 1 shows an example that the base
station divides the received packets into two groups
according to two source nodes: N1 and N2. After
sorting the packets in each group, it �nds that the
dropped packet isN1.Packet2, which is the identi�er
of the packet whose corresponding source node is
N1.

(2) Collecting PFEs: for each dropped packet, the base
station traces its routing path and �nds the suspi-
cious nodes. In Figure 1, the base station sends a
request to N1 to ask it for the next forwarding node
of N1.Packet2; N1 searches its forwarding records
and �nds that the next forwarding node of
N1.Packet2 is N2, on behalf of the base station, N1
asks N2 for the next forwarding node of the packet;
N2 searches its forwarding records and �nds that
next forwarding node isN4;N2 continues to askN4
for the next forwarding node of the packet; N4 re-
ports the next forwarding node of the packet is N6.
But after N4 asks N6, N6 reports that it has never
received the packet. At this moment, the base station
�nds a logic con�ict betweenN4 andN6, and then, it
identi�esN4 andN6 as suspicious nodes. To resolve
the logic con�ict and �nd the liar, the base station
collects PFEs stored by the neighbors of N4, namely
N2, N3, and N5.

(3) Fusing PFEs: the base station fuses the collected
PFEs. BecauseN2,N3, andN5 provide PFEs to prove
that N4 has forwarded N1.Packet2 to N6, the base
station discovers that N6 lies to hide its dropping
packet behavior.

As mentioned above, EFDA does not need to inject extra
packets to obtain the training dataset to train the detection
model, and it utilizes the existing PFEs in the network to
perform logical reasoning and identify malicious nodes.

In summary, the contributions of this paper are as
follows.

We propose a lightweight evidence fusion based packet
dropping attack detection algorithm (EFDA) for the

resource-constrained IoT networks. EFDA uses the packet
forwarding evidences to detect malicious nodes, which
achieves a high detection accuracy with a low cost. We
conduct simulation experiments to systematically evaluate
our detection algorithm. �e experimental results show that
EFDA provides better detection accuracy than ML-based
algorithms.

1.2. Organization. �e remainder of this paper is organized
as follows. Section 2 introduces the related work of the
packet dropping attack detection in IoT. Section 3 formalizes
the packet dropping attack. Section 4 details our detection
algorithm, EFDA. Section 5 shows the results of the sim-
ulation experiments. Section 6 concludes this paper.

2. Related Work

To resist the packet dropping attack, a wide variety of al-
gorithms are proposed in recent researches, which can be
divided into �ve categories: monitor-based algorithms, ac-
knowledgment-based algorithms, camou�age-based algo-
rithms, ML-based algorithms, and other algorithms.

2.1. Monitor-Based Algorithm. �e core of monitor-based
algorithms is to place monitoring nodes among commu-
nication nodes and classify them into “normal” and “ab-
normal” by the collected tra�c data [10]. Watchdog [11] is a
basic technology for the packet dropping attack detection,
where a monitoring node sni�s the tra�c of the next hop to
detect the attacks of malicious nodes. Li et al. [12] applied the
watchdog to monitor the behavior of nodes rather than
tra�c data, and they detected malicious nodes by comparing
the interval of sending and receiving packets with the
threshold. In the monitor-based detection (CMD) [13], each
node monitors the packet loss rates of its preferred parent
node and its one-hop neighbor nodes. By comparing the
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packet loss rate of its preferred parent and one-hop neighbor
nodes, the monitoring node can find the abnormal behaviors
of its preferred parent node.

2.2. Acknowledgment-Based Algorithms. 'e acknowledg-
ment-based algorithms depend on the acknowledgment
(ACK) packet to detect malicious nodes [14]. Each node is
responsible for monitoring the forwarding behaviors of its
next node and reporting it to the base station by sending ACK
packets. In adaptive acknowledgment-based approach (AAA)
[15], each node monitors its one-hop and two-hop down-
stream nodes. After forwarding a data packet, the node
overhears the forwarding behavior of its one-hop downstream
node and waits to receive an ACK packet from its two-hop
downstream node. Once receiving no ACK packet, the node
identifies its one-hop downstream node as a malicious node.
In single checkpoint-based detection (SCAD) [16], the source
node randomly selects an intermediate node on the routing
path as the checkpoint node for each packet. After receiving
the packet, both the sink node and checkpoint node need to
reply an ACK packet to the source node. If receiving no ACK
packet, other intermediate nodes will send an alarm packet to
the source node to suspect their downstream nodes, which are
identified as malicious nodes.

2.3. Camouflage-Based Algorithms. In the energy harvesting
motivated networks (EHNets), some nodes called energy
harvesting node need to periodically harvest energy from an
immediate environment. In camouflage-based active de-
tection (CAM) [17], each node actively disguises it as an
energy harvesting node and pretends not to overhear its
adjacent nodes. But actually, each node monitors any for-
warding behaviors of its adjacent nodes. Once finding ab-
normal behaviors, they identify that adjacent node as a
malicious node. In the EYES [18], each node not only ac-
tively disguises itself as an energy harvesting node to
overhear the forwarding behaviors of its adjacent nodes but
also validates any previous uncertain forwarding behavior to
detect malicious nodes.

2.4. ML-Based Algorithms. Machine learning (ML) is a
common and efficient technology, which has been widely
used in malicious node detection. Akbani et al. [19] com-
bined the ML with the reputation systems (RS), which
automates the process of designing the RS model. Liu et al.
[20] proposed a trust system, which calculated the trust of
each node by the trust of each routing path. Based on the
trusts of nodes, they were divided into malicious or benign
group. Liu et al. [21] improved this scheme, and they used
the method of linear regression to calculate the trust of
nodes, which was more accurate than [20]. Also, they took
into account the possibility that nodes launched the mul-
tiple-mix-attack. Yang et al. [22] considered a more fine-
grained attack named selective-edge packet attack, and they
argued that malicious nodes may be more intelligent to
launch an attack selectively. Also, they selected the best
scheme after sifting through various types of regression
algorithms and clustering algorithms.

2.5. Other Algorithms. In [23], due to most of the detection
algorithms are for the centralized networks, blockchain-
based multimobile code-driven trust mechanism (BMCTM)
is proposed to detect malicious nodes in decentralized
networks. It combines the blockchain technology and trust
system, which detects nodes as malicious nodes according to
their low trusts. A secure routing framework is proposed in
[24], which leverages a new type of packet called dummy
packet to detect malicious nodes.'e dummy packet scheme
is used to find the critical routes and detect malicious nodes
in the critical routes. In [25], considering malicious nodes
may lie to attract and drop packets during route estab-
lishment phase, and a robust hybrid method is proposed to
strengthen the route security.

Most of the above algorithms are heavyweight for the
emerging resource-constrained IoT networks. For monitor-
based algorithms, acknowledgment-based algorithms, and
camouflage-based algorithms, the energy-limited nodes
need to monitor the forwarding behaviors of their neighbor
nodes and to converge collected data all the times. For ML-
based algorithms, the energy-limited nodes need to assist
them to obtain the training dataset by forwarding numerous
injected packets. 'ey are heavyweight for energy-limited
nodes. 'erefore, in this paper, we propose a lightweight
evidence fusion-based detection algorithm (EFDA) to
achieve a high detection accuracy.

3. Network and Attack Model

In this section, the network model is introduced, and the
packet-dropping attack is formalized. Table 1 exhibits a list
of notations for later reference.

3.1. Network Model. In this paper, the IoT network is a
multihop wireless network consisting of sensor nodes, which
communicate with each other through the routing protocol
for low-power and lossy networks (RPL). 'e sensor nodes
collect data and encapsulate them into packets. 'e packets
are forwarded by relay nodes to the base station. A typical
IoT network is shown in Figure 2.

A node is represented as Ni (i ∈ [1, M]), and the base
station is represented as S. Each node has at least one routing
path to the base station S. A routing path is represented as
Pathj (j ∈ [1, K]), which is expressed as

Pathj � N1⟶ N2⟶ · · ·⟶ Ni⟶ S􏼂 􏼃, (1)

where it represents a packet which is sent from N1, for-
warded through N2, . . . , Ni in a sequence, and finally re-
ceived by the base station S.

'en, the network is expressed as

Network � (N, S, P),

N � N1, N2, . . . , Ni, . . . , NM􏼈 􏼉,

P � Path1,Path2, . . . , Pathj, . . . , PathK􏽮 􏽯,

(2)

where N is the set of nodes in the network, and P is the set of
routing paths in the network, Network is the network
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consisting of the sensor nodes, the base station, and the
routing paths.

3.2. Packet Dropping AttackModel. If there are no malicious
nodes, a packet will arrive at the base station. However, the
packet may be discarded halfway if there are malicious
nodes.

As shown in Figure 3, the malicious node N6 drops the
packet N1.Packet2. In this paper, the malicious nodes may
launch the packet-dropping attack with a certain probability
Pd (Pd ∈ (0, 1]). We use Ni.Pd to represent the probability
that Ni launches a packet-dropping attack. Considering the
harmfulness of the packet-dropping attack and the con-
strained resources of the IoT network, the malicious nodes
should be detected with a high accuracy and a low overhead.

3.3. PFEModel. 'e packet forwarding evidences (PFEs) are
generated during the packet transmission. Due to the
broadcast characteristic of wireless communication, when a
node Nf forwards a packet Ni.Packetj, all neighbors of Nf

can sniff the packet. 'e receiving node Nr will receive the
packet, and other neighbors of Nf generate PFEs to record
the forwarding behavior of Nf. 'e generated PFE can be
represented as

PFE � Nf, Ni.Packetj, Nr􏼐 􏼑, (3)

where it represents the neighbors of Nf witness that Nf has
forwarded the packet N1.Packetj to Nr.

As shown in Figure 4, N4 wants to forward the packet
N1.Packet2 to N6. Due to the broadcast characteristic of
wireless communication, all neighbors of N4 can sniff the
packet. N6 receives the packet, and the other neighbors (N2,
N3, N5, N10) of N4 generate a PFE, namely
(N4, N1.Packet2, N6).

During packet transmission, each node generates nu-
merous PFEs according to the forwarding packet behaviors
of its neighbors. We design a table named PFE Table (PFET)
for each node to store the PFEs. PFET is shown in
Table 2.where there are four fields: Packet-ID, Forwarding
Node, Receiving Node, and Capacity. Packet-ID means the
identifier of the forwarded packet; Forwarding Node means
the node that forwards the packet; Receiving Nodemeans the
node that receives the packet; Capacitymeans the number of
PFEs that a node can store. We assume that a node’s total
capacity is C, and it is divided equally to its neighbors.
According to Table 2, we can know that N10 has generated
three PFEs about N4, which, respectively, represent N4 has
forwarded N1.Packet2 to N6, N1.Packet3 to N5, and
N2.Packet1 to N3.

To avoid PFE being faked or tampered, we apply the
signcryption in [26] to transfer the PFE. 'e signcryption
generalized-CLSC (gCLSC) is secure and lightweight, which
can be used in the resource-constrained IoTnetwork. Before
sending a PFE to the base station, the sending node encrypts
and signs the PFE with gCLSC. After receiving the encrypted
and signed PFE, the base station verifies the sending node’s
signature and decrypts the PFE with gCLSC.

4. Algorithm

In this section, we introduce our evidence fusion-based
detection algorithm (EFDA), which is divided into three
phases. (1) Getting the dropped packet set: the base station
finds the dropped packet set and the source node of each
dropped packet. (2) Collecting PFEs: for each dropped
packet, the base station traces its routing path and finds the
suspicious nodes. PFEs stored by neighbors of suspicious
nodes are collected. (3) Fusing PFEs: the base station fuses
the collected PFEs to detect malicious nodes.

4.1. Getting the Dropped Packet Set. 'e source nodes collect
data from the environment, encapsulate them into packets,
and then upload the packets to the base station. After re-
ceiving the packets, the base station divides the received
packets into different groups Gi (i ∈ [1, M]) according to
their source nodes Ni. For each group, the base station sorts
the packets according to their sequence numbers. After
grouping and sorting the received packets, the base station
can find the dropped packets and their corresponding source
nodes.

As Figure 5 shows, the base station divides the received
packets into M groups and sorts the packets for each group.
For the first group of the source node N1, the base station
receives the packets with sequence number N1.Packet1,
N1.Packet2, and N1.Packet4 except N1.Packet2. So it finds
that N1.Packet2 is dropped. After checking all groups, the
base station can obtain the dropped packet set.

4.2. Collecting PFEs. After finding all the dropped packets,
the base station traces the routing path of each dropped
packet. In the process of tracing, the base station investigates
the nodes on the routing path hop by hop. In the final hop, it

Table 1: Notations.

Symbol Meaning
N 'e set of nodes in a network
Ni A node in N

S 'e base station in a network
P 'e set of routing paths in a network
Pathj A routing path in P

Ni.Packetk 'e identifier of a packet whose source node is Ni

Pd 'e attack probability of a node

Base Station
N1

N2

N3

N4

N5

N6

N7

N8

N10

Figure 2: A typical IoT network.
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can find two suspicious nodes that may drop the packet. To
judge the suspicious nodes, PFEs about them are collected at
the base station. We propose an evidence collection protocol
(ECP) to trace the routing path and collecting PFEs.

In order to assist ECP to trace the routing path of each
dropped packet, each node in the network needs to generate
records about its packet forwarding behaviors. Each node
maintains a packet forwarding record table (PFRT) to store
the records, which is shown in Table 3. It contains three
fields: Last Node, Packet-ID, and Next Node. Last Node
means the last node that forwards the packet, Packet-ID
means the identifier of the forwarded packet, and Next Node
means the next node where the packet is forwarded. After a
node receives a packet and forwards the packet to another
node, it will update its PFRT to record the forwarding
behavior.

As shown in Figure 6, during the transmission of the
packet N1.Packet2, N4 receives the packet from N2 and
forwards it to N6. To record this forwarding behavior, N4
inserts a record (N2, N1.Packet2, N6) into its PFRT. Besides,

malicious nodes may not update their PFRTs because they
drop packets instead of forwarding them.

Based on the packet forwarding records stored by nodes,
ECP can trace the routing path of each dropped packet. For a
dropped packet Ni.Packetj, the process of tracing the packet
can be described as follows.

'e base station finds the dropped packet Ni.Packetj and
its corresponding source node Ni. It constructs a TM
message (shown in Table 4) tm {“Packet-ID”: “Ni.Packetj”}
and sends it to Ni. 'e message tm is used to ask Ni for the
next forwarding node of Ni.Packetj. After that, the base
station initializes the tracing progress as [Ni]. Once re-
ceiving tm, node Ni searches its PFRT for the packet for-
warding record about the packet. It finds the next forwarding
node is Ns. It constructs a RM message (shown in Table 5)
rm {“Successor”: “Ns”} and sends it to the base station. 'e
message rm is used to report the tracing progress to the base
station. Besides, Ni forwards tm to Ns to ask it to continue to
trace the routing path of the packet. When the base station
receives rm, it updates the tracing progress as [Ni⟶ Ns].
After receiving tm, node Ns repeats the operations like Ni to
continue to trace the routing path. After several steps of
tracing, the tracing progress is updated to
[Ni⟶ Ns⟶ · · ·⟶ Nk⟶ Nm], and a malicious
node Nm receives tm.

As shown in Figure 7, the base station finds the dropped
packet N1.Packet2 and its corresponding source node N1.
'en, it sends a TM message tm to N1 and initializes the
tracing progress as [N1]. Once receiving tm, node N1
searches its PFRTand finds the next forwarding node is N2.
It sends a RM message rm1 to the base station and forwards
tm to N2. When the base station receives rm1, it updates the
tracing process as [N1⟶ N2]. Once receiving tm, nodeN2
continues to trace the routing path of the packet. After
several steps of tracing, the tracing progress is updated to
[N1⟶ N2⟶ N4⟶ N6], and N6 receives tm from N4.
We assume that node N6 is a malicious node.

When a malicious node Nm receives tm, there are three
possible cases as follows.

Case 1. 'e malicious node does not respond to the base
station.

'e continued tracing process is described as follows.
After receiving tm, the malicious node Nm does not

respond to the base station. Once receiving no response from
Nm, the base station identifies Nm as a malicious node.
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Figure 3: A network with malicious nodes.
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Table 2: PFET of N10.

Packet-ID Forwarding node Receiving node Capacity
N1.Packet2

N4

N6
C/2N1.Packet3 N5

N2.Packet1 N3

N4.Packet1
N6

N5
C/2N4.Packet2 N7

N5.Packet1 N7
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As shown in Case 1 of Figure 7, N6 has received tm from
N4, but it does not respond to the base station. 'e base
station identifies N6 as a malicious node.

Case 2. 'e malicious node responds that it has never re-
ceived the packet forwarded by its predecessor.

'e continued tracing process is described as follows:
After receiving tm, the malicious node Nm denies that it

has received Ni.Packetj from Nk. So, it constructs an IM
message (shown in Table 6) im {“Packet-ID”: “Ni.Packetj,”
“Impeaching-Node”: “Nm,” “Impeached-Node”: “Nk”} and
sends it to the base station. 'e message im is used to report
the base station that Nm has never received Ni.Packetj from
Nk. When the base station receives im, it finds a logic conflict
between Nk and Nm. It identifies Nk and Nm as suspicious
nodes.

As shown in Case 2 of Figure 7, N6 denies that it has
received N1.Packet2 from N4. 'en, it sends an IM message
im1 to the base station. After receiving im1, the base station
identifies N4 and N6 as suspicious nodes.

Case 3. 'e malicious node responds that it has forwarded
the packet to a neighbor, but actually not.

'e continued tracing process is described as follows:
After receiving tm, the malicious node Nm lies that it has

forwarded Ni.Packetj to Nn. So, it sends rm {“Successor”:
“Nn”} to the base station. Besides, it forwards tm to Nn.
When the base station receives rm, it updates the tracing
progress as [Ni⟶ Ns⟶ · · ·⟶ Nk⟶ Nm⟶ Nn].
Once receiving tm, node Nn searches its PFRT but finds no
packet forwarding record about Ni.Packetj. So, it sends im

{“Packet-ID”: “Ni.Packetj,” “Impeaching-Node”: “Nn,”
“Impeached-Node”: “Nm”} to the base station to deny that it
has received Ni.Packetj from Nm. When the base station
receives im, it finds a logic conflict between Nm and Nn. It
identifies Nm and Nn as suspicious nodes.

As shown in Case 3 of Figure 7, N6 lies that the next
forwarding node is N8. It sends rm4 to the base station and
forwards tm to N8. When the base station receives rm4, it
updates the tracing progress as
[N1⟶ N2⟶ N4⟶ N6⟶ N8]. Once receiving tm,
node N8 sends im2 to the base station to deny that it has
received N1.Packet2 from N6. When the base station re-
ceives im2, it identifies N6 and N8 as suspicious nodes.

After the tracing process of a dropped packet like
Ni.Packetj, the base station can get two suspicious nodes like
Nk and Nm (Nm and Nn). To find the liar in them, the base
station needs to collect PFEs about them as follows.

Without loss of generality, we suppose the suspicious
nodes are Nk and Nm.

N1.Packet1 N1.Packet2 N1.Packet3 N1.Packet4G1

N2.Packet1 N2.Packet3N2.Packet2 N2.Packet4G2

NM.Packet3NM.Packet1 NM.Packet2 NM.Packet4GM

The base station

N1.Packet2 N2.Packet3 NM.Packet1···

Dropped packet set

Figure 5: 'e process of getting the dropped packets set.

Table 3: Packet forwarding record table of N4.

Last node Packet-ID Next node
N2 N1.Packet2 N6

N4

N2 N6

Last Node
N2

Packet-IDPacket-ID Next Node
N1.Packet2 N6 Insert

N1.Packet2

N
1 .Packet2 N 1.P

acket 2
N1.Packet2

Figure 6: An example of updating the PFRT.

Table 4: Tracing message (TM).

Field Description
Packet-ID 'e identifier of a dropped packet

Table 5: Reporting message (RM).

Field Description
Successor 'e next forwarding node of the dropped packet
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'e base station constructs a CEM message (shown in
Table 7) cem {“Expected-PFE”: “(Nk, Ni.Packetj, Nm)”} and
sends it to the precursor Nk of the suspicious nodes. 'e
message cem is used to collect PFEs. Once receiving cem, Nk

constructs a REM message (shown in Table 8) rem {“Ex-
pected-PFE”: “(Nk, Ni.Packetj, Nm)”} and sends it to its
neighbors. 'e message rem is used to request the neighbors
to send the relevant PFEs to the base station. When each
neighbor of Nk receives rem, it searches its PFET for the
PFE. Once getting the matched PFE, each neighbor con-
structs an EM message (shown in Table 9) em {“PFE”:
“(Nk, Ni.Packetj, Nm)”} and sends it to the base station. But,
the accomplice does not submit correct PFE by sending em

{”PFE”: “(No Evidence)”} or submits a faked PFE to the base
station. After receiving all EM messages, the base station
extracts the PFEs in them.

As shown in Case 2 of Figure 7, the base station finds the
suspicious nodes N4 and N6. It sends a CEM message cem1
to the precursor N4. Once N4 receives cem1, it sends a REM
message rem1 to its neighbors. When the neighbors (N2, N3,
N5, and N10) receive rem1, benign neighbor N2 (N3, N5)
searches its PFETs and sends the matched PFE by an EM
message em1 (em2, em3) {“PFE”: N4, N1.Packet2,
N6“(N4, N1.Packet2, N6)”} to the base station, but the ac-
complice N10 sends em4 {“PFE”: “(No Evidence)”} to the
base station. After receiving all EM messages, the base
station extracts all PFEs.

After tracing the routing path of a dropped packet by
ECP, the base station can get two suspicious nodes and their
relevant PFEs.

4.3. Fusing PFEs. After the base station finds the suspicious
nodes and collects their relevant PFEs by ECP, we propose
an evidence fusion algorithm (EFA) to fuse these PFEs and
detect malicious nodes.

'e evidence fusion is actually a voting process. For the
suspicious nodes Nk and Nm about Ni.Packetj, Nk’s
neighbors send either PFE (Nk, Ni.Packetj, Nm) or PFE
(NoEvidence) to the base station. PFE (Nk, Ni.Packetj, Nm)
means a neighbor witnesses Nk has forwarded Ni.Packetj to
Nm, and it votes for Nk. PFE (NoEvidence) means a
neighbor regards Nk as the liar, and it votes for Nm. 'e
number of votes for a node is represented as v, and vk (vm) is
the number of votes for Nk (Nm). Malicious neighbors may
submit a faked PFE to vote for its accomplices. To mitigate
the effects of the collusion among malicious nodes, we use
nodes’ weights to multiply nodes’ votes. 'e weight of Ni is
represented as ωi, and it is the ratio of Ni’s trust to the initial
value, namely ωi � ti/T. 'e trust of Ni (i ∈ [1, M]) is
represented as ti, and the initial value of ti is T. 'e base
station maintains a trust and weight table (TWT) to record
the trusts and weights of all nodes.

N2.Packet3 NM.Packet1···Dropped packet set

N1

The base station

N2 N4 N6 N8

N1.Packet2

tm

tm

rm

Tracing progress: [ N1-> N2-> N4 -> N6 ]

tm

rm2

tm

rm3

case 1

N6

malicious node

Do nothing

case 2

N6N4

im1N3 N5 N10

rem1 rem1rem1

em2 em3 em4

case 3

N6

rm4

N8tm

im2
N5 N7 N10

rem2 rem2 rem2

em6 em7 em8

cem1 cem2

N2

em1

rem1

Tracing progress: [ N1-> N2-> N4 -> N6 -> N8 ]

N4

rem2

em5

Figure 7: An example of ECP.

Table 6: Impeaching message (IM).

Field Description
Packet-ID 'e identifier of a dropped packet

Impeaching-node 'e node impeaches that impeached node
has not forwarded the packet to it

Impeached-node 'e node is impeached

Table 7: Collecting evidences message (CEM).

Field Description
Expected-PFE 'e PFE is expected by the base station

Table 8: Requesting evidence message (REM).

Field Description
Requested-PFE 'e PFE is requested by the sending node
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As the votes are weighted, the number of votes for a node
is the sum of the weights of the neighbors that have voted for
it. After fusing PFEs, the base station identifies the node with
fewer votes as the liar and punishes it by decreasing its trust.

For the dropped packet N1.Packet2 in Case 2 of Figure 7,
the base station gets four PFEs {N2: (N4, N1.Packet2, N6),
N3: (N4, N1.Packet2, N6), N5: (N4, N1.Packet2, N6),
N10: (NoEvidence) }. N2, N3, and N5 witness that N4 has
forwarded N1.Packet2 to N6, and they regard N4 as a benign
node and vote for it. But N10 denies that N4 has forwarded
the packet to N6, and it regards N6 as a benign node and
votes for it. Because ω2, ω3, ω5, and ω10 are initialized as 1,
v4 � ω2 + ω3 + ω5 � 3 and v6 � ω10 � 1. By comparing v4
with v6, the base station identifies N6 as the liar and de-
creases its trust.

For a dropped packet, ECP traces its routing path to find
two suspicious nodes and the relevant PFEs, and EFA fuses
these PFEs to discover the liar and decreases its trust. After
ECP traces all dropped packets and EFA punishes all liars
over, the final trusts of nodes can be obtained. Based on the
final nodes’ trusts, the K-means clustering is used to cluster
nodes into two groups: malicious group (MG) and benign
group (BG).

As shown in Algorithm 1, EFDA contains three steps.

(1) Getting the dropped packet set: the base station
divides the received packets into different groups Gi

according to their source nodes (line 3–5) and sorts
the packets according to their sequence numbers for
each group (line 6-7). After grouping and sorting the
received packets, the base station can find the
dropped packet set, namely DPS (line 8–12).

(2) Collecting PFEs: for each dropped packet, the base
station S sends a TM message to the source node Ni

to start a tracing process (line 14–15). 'e current
node Ncur finds the successor Ns and continues the
tracing process until the base station finds two
suspicious nodes Nk, Nm (line 17–23). 'e base
station collets PFEs about Nk, Nm to judge them
(line 24–28).

(3) Fusing PFEs: for two suspicious nodes, the base
station fuses their relevant PFEs to update their votes
(line 29–35). 'e node with fewer votes is punished
by decreasing its trust (line 36–41). Based on the final
nodes’ trusts, the K-means clustering is used to
cluster nodes to BG and MG (line 43).

4.4. Algorithm Analysis

4.4.1. Algorithm Complexity Analysis. According to the
pseudocode in Algorithm 1, the proposed approach contains

three steps: (1) getting the dropped packet set: in order to get
the dropped packet set, EFDA needs to traverse the received
packet set (RPS). 'e complexity of the first step is
O1 � size(RPS), where size(RPS) means to find the size of
the set RPS. (2) Collecting PFEs: in order to collect PFEs,
EFDA needs to traverse the dropped packet set (DPS). For
each dropped packet, EFDA needs to trace the routing path
of the dropped packet. 'e complexity of the second step is
O2 � size(DPS) × size(Path), where Path means the traced
routing path. (3) Fusing PFEs: in order to fuse PFEs, EFDA
needs to traverse the PFEs for each dropped packet. 'e
complexity of the third step is O3 � size(DPS) × size(PFEs).
'erefore, the complexity of EFDA is represented as O �

O1 + O2 + O3 � size(RPS) + size(DPS) × size(Path) +

size(PFEs).

4.4.2. Algorithm Overheads Analysis

(1) Energy Overheads of EFDA. EFDA detects malicious
nodes by tracing the routing paths of dropped packets. In
addition, it can get the detection results in a limited number
of dropped packets. We assume that the limited number of
dropped packets is L. For each tracing process, considering
the worst case, all nodes on the routing path need to send a
TM message and a RM message. Only some specified nodes
need to send an IM message, a REM message, or an EM
message. 'erefore, each node sends no more than 3 extra
messages for one tracing process. Because EFDA needs to
trace L dropped packets, each node sends no more than 3 ×

L extra messages for one time detection. Moreover, since the
sizes of the above messages are small, the energy overheads
of sending them are small.
(2) Storage Overheads of EFDA. In EFDA, each node
needs to store the packet forwarding records and PFEs,
and we estimate the storage overheads of EFDA to prove
its feasibility. 'e storage overheads of a node are affected
by the sizes of its PFRT and PFET. A general IoT device
forwards 1200messages/minute according to the study in
[27]. Assuming that EFDA is executed every hour to
detect malicious nodes. During this period, there are
72000 messages forwarded and 72000 packet forwarding
records stored by a node. For a packet forwarding record,
it contains three fields, and its storage overheads are
3 Bytes. 'e storage overheads of PFRT are
72000 × 3 � 216000 Bytes ≈ 210 kB. For PFET, its capacity
C (shown in Table 2) is approximate to the number of
forwarded packets, namely 72000. For a PFE, it contains
three fields, and its storage overheads are 3 Bytes. 'e
storage overheads of PFET are 72000 × 3 �

216000 Bytes ≈ 210 kB. So, the storage overheads of a
node are 210 + 210 � 420 kB, which is far less than a
general IoT device’s storage 2GB [28].

4.4.3. Distinction between EFDA and ML-Based Algorithms.
In this section, we analyze the distinction between EFDA
and ML-based algorithms. For each injected packet, ML-
based algorithms use it to calculate the trust of its routing
path by mathematical reasoning. 'en, they use the

Table 9: Evidence message (EM).

Field Description

PFE 'e stored PFE is encrypted and signed by
the sending node, and it sends to the base station
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routing path’s trust to estimate the nodes’ trusts on the
routing path. However, in order to estimate the nodes’
trusts more accurately, numerous packets need to be
injected to get more routing path’s trusts, which are used
as the input of the ML-based algorithms.

On the contrary, EFDA detects malicious nodes
without injecting packets. It can trace the routing path of
each dropped packet and find the suspicious nodes. 'e

PFEs around suspicious nodes are collected to the base
station, and EFDA fuses them to find the malicious nodes.
A potential constraint for EFDA is how to resist collusive
attacks. Suppose that a benign node is surrounded by
many malicious nodes, they submit faked PFEs that cause
the base station to misidentify the benign node as a
malicious node. A possible extension is to use the causal
inference algorithm to solve the problem.

Input: RPS (Received Packet Set)
Output: BG (Benign Group), MG (Malicious Group)

(1) Initialize BG � ∅,MG � ∅;
Step1 Getting the dropped packet set:

(2) Initialize all Gi � ∅,DPS � ∅ ;
(3) foreach Ni.Packetj ∈ RPS do
(4) Gi � Gi ∪Ni.Packetj;
(5) end
(6) for i � 1; i≤M; i ++ do
(7) Gi sorts inner Ni.Packetj in ascending order of j;
(8) for j � 1; j≤ jmax; j ++ do
(9) if Ni.Packetj ∉ Gi then
(10) DP S � DP S∪Ni.Packetj;
(11) end
(12) end
(13) end

Step2 Collecting PFEs:
(14) foreach Ni.Packetj ∈ DP S do
(15) S⟶ TMNi, Process � Ni􏼈 􏼉;
(16) Ncur � Ni;
(17) while Find no suspicious nodes do
(18) Ncur finds next forwarding node is Ns;
(19) Ncur ⟶ RMS, Ncur⟶T M Ns;
(20) Ncur � Ns;
(21) Process �Process∪Ns;
(22) end
(23) S finds two suspicious nodes (Nk, Nm);
(24) S⟶ CEMNk;
(25) Nk ⟶ REMNk

′sneighbors;
(26) foreach neighbor ∈ Nk

′s neighbors do
(27) neighbor⟶ PFES;
(28) end

Step3 Fusing PFEs:
(29) foreach PFE ∈ PFEs do
(30) if PFE �� Nk, Ni.Packetj, Nm􏽮 􏽯 then
(31) Vk ++;
(32) else
(33) Vm ++;
(34) end
(35) end
(36) if Vk >Vm then
(37) Decrease Nm’s trust;
(38) end
(39) if Vk <Vm then
(40) Decrease Nk’s trust;
(41) end
(42) end
(43) Based on nodes’ trusts, K-means clusters nodes to BG and MG;
(44) return (BG, MG);

ALGORITHM 1: EFDA algorithm.
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5. Performance Evaluation

In this section, we evaluate the performance of our proposed
EFDA and compare it with two typical ML-based algo-
rithms, namely HD [20] and PDE [21].

Both HD and PDE need to inject numerous labeled
packets into the network and collect them at the base station.
Each labeled packet has a routing path, and each routing
path has abundant labeled packets. For each routing path,
not all labeled packets on the routing path can be collected
by the base station due to the malicious nodes. HD and PDE
define the trust of the routing path as a ratio, which is the
number of collected labeled packets to the total number of
labeled packets on the routing path. According to whether a
node is on the routing path, the relationship between the
trust of nodes and the trust of the routing path can be
formalized as a mathematical equation. 'e mathematical
equation can be solved by machine learning algorithms, and
the trust of nodes can be obtained. Based on the trust of
nodes, the clustering algorithm classifies them into benign
group and malicious group.

We evaluate accuracy and error rate to compare de-
tection performance. As shown in Table 10, the accuracy is
defined as Pa � (TP + TN)/(P + N), and the error rate is
defined as Fa � (FP)/(FP + TN).

5.1. Experimental Environment

5.1.1. Environmental Settings. In our environment, all nodes
are evenly distributed in a rectangle area of 100 × 100m2,
and each node’s communication range is 10m. Our IoT
network is generated randomly, and there is at least one
routing path from each source node to the base station.

To avoid bias, we run our simulation for each experiment
in 10 rounds with 10 different networks generated randomly.

'e average value of 10 rounds’ result is calculated as the
final experimental result of each experiment. In particular,
we use the simulator in [21] and add our EFDA to it. Both
EFDA and theML-based algorithms are deployed at the base
station.

5.1.2. Environmental Variables. In the following experi-
ments, we investigate the impact of the variables (shown in
Table 11) on the detection performance. Unless otherwise
specified, all experimental variables will remain the default,
which is set as follows.

'e number of uploaded packets is 500. 'e number of
nodes is 15. 'e probability of an attack is 0.3. 'e per-
centage of malicious nodes is 0.3. 'e diversity of the
network is 1.

5.2. HD vs PDE vs EFDA. In this section, we explore the
performance comparison among HD, PDE, and EFDA
through experiments.

5.2.1. Impact of the Number of Uploaded Packets. 'e results
in Figure 8 show that EFDA performs better than HD and
PDE. When the number of uploaded packets is small, HD
and PDE get a low Pa. As the number of uploaded packets
increases, HD and PDE can get a higher Pa. EFDA gets a
stale Pa in all cases. 'is is because as the number of
uploaded packets increases, HD and PDE can calculate more
routing path’s trust to estimate nodes’ trusts. Once more
collected information is used to estimate nodes’ trusts, HD
and PDE can get more exact nodes’ trusts and get more
accurate detection results. EFDA can trace the routing path
to find the suspicious nodes and detect malicious nodes in a
smaller detection range. EFDA hardly needs abundant

Table 10: Experimental evaluation.

Detection result
Negative Positive Total

Actual result
Negative True positive (TP) False negative (FN) P (actual negative)
Positive False positive (FP) True negative (TN) N (actual positive)
Total P′ (detect negative) N′ (detect positive) P+N

Table 11: Variables and description.

Variables Description
'e number of uploaded
packets 'e number of packets that are uploaded to the base station will influence the detection accuracy

'e number of nodes It means the number of nodes deployed in the network, which can affect the scale of the network and the
detection accuracy

'e percentage of malicious
nodes It means that how many nodes are malicious in the network, which can affect the detection result

'e probability of attack Malicious nodes launch the packet-dropping attack with a probability, and less probability means that the
node is more difficult to be detected. It can influence the detection accuracy

'e diversity of network
It essentially indicates the ratio of available routing paths that could be chosen by source nodes to upload
packets. 'e diversity of network reflects the routing paths’ complexity, and it influences the detection

accuracy
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routing path’s information to estimate nodes’ trusts, so it can
get a stable detection results.

5.2.2. Impact of the Number of Nodes. �e results in Figure 9
show that when the number of nodes is small, all algorithms
get a high Pa and a low Fa; but when the number of nodes
increases, the accuracy Pa of all algorithms decreases, and
the error rate Fa of them increases. EFDA still performs
better than HD and PDE in all cases. �is is because when
the number of nodes is 5, the network topology is simple,
andmalicious nodes are more easily to be detected; when the
number of nodes increases and the network topology be-
comes more complex, the malicious nodes are more likely to
hide their abnormal behaviors, and it is di�cult to identify
all malicious nodes. However, no matter how complex the

network topology becomes, EFDA still reaches higher ac-
curacy than HD and PDE.

5.2.3. Impact of the Percentage of Malicious Nodes. �e
results in Figure 10 show that EFDA gets the better results
than the other two detection algorithms; but with the
percentage of malicious nodes increases, the accuracy Pa of
EFDA is getting lower and the error rate Fa of EFDA is
getting higher, while the trends of HD and PD remain stable.
�is is because when the percentage of malicious nodes
increases, the number of malicious nodes in the network will
also increase that leads to more malicious nodes cooperate to
resist EFDA. Assuming that most of the neighbors around a
benign node are malicious, the malicious neighbors vote for
its accomplice, which causes the benign node to be
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Figure 8: �e impact of the number of uploaded packets. (a) Impact of the number of uploaded packets on Pa. (b) Impact of the number of
uploaded packets on Fa.
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Figure 9: �e impact of the number of nodes. (a) Impact of the number of nodes on Pa. (b) Impact of the number of nodes on Fa.

Security and Communication Networks 11



misidenti�ed as the liar, and its trust is decreased by EFDA.
Because EFDA misidenti�ed the benign node as a malicious
node, it gets a lower Pa and a higher Fa. Although we have
optimizations for the collusion among malicious nodes, it is
di�cult to resist the collusion attacks from many malicious
nodes.

5.2.4. Impact of the Probability of Attack. �e results in
Figure 11 show that EFDA performs better than HD and
PDE. When the probability of attack is small, EFDA gets a
small Pa and a large Fa. However, when the probability of
attack increases, the accuracy Pa of EFDA begins to increase,
and the error rate Fa of EFDA begins to decrease. �e trends
of HD and PDE are similar, but their accuracy Pa is lower
than that of EFDA, and their error rate Fa is higher than that
of EFDA. �is is because when the probability of attack is

small, malicious nodes intend to hide their attack behaviors
that make EFDA more di�cult to detect them. However,
when the probability of attack becomes larger, malicious
nodes are more likely to launch a packet dropping attack that
makes EFDA �nd more dropped packets. EFDA traces more
routing paths of the dropped packets and �nds more sus-
picious nodes, and it gets more accurate detection results.

5.2.5. Impact of the Diversity of Network. �e results in
Figure 12 show that when the diversity of network is low,
both HD and PDE get a low Pa and a high Fa. With the
diversity of network increases, their accuracy Pa becomes
higher, and their error rate Fa becomes lower. However,
EFDA gets stable accuracy Pa and error rate Fa in all cases,
and they are better than those of HD and PDE. �is is
because when the diversity of network is low, there are few
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Figure 10: �e impact of the percentage of malicious nodes. (a) Impact of the percentage of malicious nodes on Pa. (b) Impact of the
percentage of malicious nodes on Fa.

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

0.1 0.3 0.5 0.7 0.9

P a

The probability of attack

HD
PDE
EFDA

(a)

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

F a

0.1 0.3 0.5 0.7 0.9
The probability of attack

HD
PDE
EFDA

(b)

Figure 11:�e impact of the probability of attack. (a) Impact of the probability of attack on Pa. (b) Impact of the probability of attack on Fa.
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routing paths for source nodes to upload packets to the base
station. It means HD and PDE obtain few routing paths’
information to estimate the nodes’ trusts, and that causes
HD and PDE to get the inaccurate nodes’ trusts. �erefore,
they get negative detection results. As the diversity of net-
work becomes larger, HD and PDE obtain more routing
paths’ information to estimate the nodes’ trusts, and they get
positive detection results. However, EFDA does not need
more di�erent routing paths’ information to estimate the
nodes’ trusts. It can trace the path of dropped packet and
accurately �nd the suspicious nodes on the path, and it only
decreases the liar’s trust. So, EFDA detects malicious nodes
more e�ciently than HD and PDE.

5.3. Discussion and Limitations. In the experiments, we
explore the performance comparison between HD, PDE,
and EFDA on �ve variables, which are the number of
uploaded packets, the number of nodes, the percentage of
malicious nodes, the probability of attack, and the diversity
of the network. Overall, it is observed that EFDA can achieve
better detection performance compared with HD and PDE.
EFDA can improve the detection rate by around 20% to 30%.

Although EFDA performs better than HD and PDE,
there are some limitations that can be addressed in our
future work. When the percentage of malicious nodes ex-
ceeds 50%, the detection performance of EFDA declines
signi�cantly, which indicates that EFDA is di�cult to resist
the collusion of numerous malicious nodes. In our future
work, we plan to investigate how to resist the collusion of
numerous malicious nodes.

6. Conclusion

Due to the distributed nature of the IoT networks, they are
vulnerable to the packet-dropping attack. �ere are abun-
dant detection algorithms to detect the packet dropping
attack; however, most of them are heavyweight for the re-
source-constrained IoTnetwork. In this paper, we propose a

lightweight evidence fusion-based detection algorithm,
namely EFDA. It uses packet forwarding evidence to detect
malicious nodes. In EFDA, the received packets are grouped
and sorted to �nd the dropped packets. For each dropped
packet, the base station traces its routing path, �nds the
suspicious nodes, and collects evidence. �e collected evi-
dences are fused to �nd the liar, and EFDA punishes the liar
by decreasing its trust. Based on nodes’ trusts, the K-means
clustering is used to cluster nodes and detect malicious
nodes.

Our experimental results demonstrate that EFDA has
better detection performance than two typical ML-based
algorithms: HD and PDE. EFDA detects malicious nodes
without injecting packets, and it can improve the detection
accuracy by around 20% to 30%.
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